Exam: CWISA-102

CWNP CWISA-102 Exam
Vendor CWNP
Certification CWNP Certified Wireless IoT Solutions Administrator
Exam Code CWISA-102
Exam Title Certified Wireless IoT Solutions Administrator Exam
No. of Questions 67
Last Updated Dec 02, 2024
Product Type Q&A PDF / Desktop & Android VCE Simulator / Online Testing Engine
Question & Answers Download
Online Testing Engine Download
Desktop Testing Engine Download
Android Testing Engine Download
Demo Download
Price $25 - Unlimited Life Time Access Immediate Access Included
CWISA-102 Exam + Online Testing Engine + Offline Simulator + Android Testing Engine & 4500+ Other Exams
Buy Now

RELATED EXAMS

  • PW0-204

    Certified Wireless Security Professional (CWSP)

    Detail
  • CWNA-106

    Certified Wireless Network Administrator

    Detail
  • CWDP-302

    Certified Wireless Design Professional

    Detail
  • CWSP-205

    Certified Wireless Security Professional (CWSP)

    Detail
  • PW0-050

    Wireless#

    Detail
  • CWNA-107

    Certified Wireless Network Administrator Exam

    Detail
  • CWAP-402

    Certified Wireless Analysis Professional

    Detail
  • CWS-100

    Certified Wireless Specialist

    Detail
  • CWAP-403

    Certified Wireless Analysis Professional

    Detail
  • CWT-100

    Certified Wireless Technician

    Detail
  • CWDP-303

    Certified Wireless Design Professional Exam

    Detail
  • CWSP-206

    CWSP Certified Wireless Security Professional Exam

    Detail
  • CWNA-108

    Certified Wireless Network Administrator Exam

    Detail
  • CWAP-404

    Certified Wireless Analysis Professional Exam

    Detail
  • CWISA-102

    Certified Wireless IoT Solutions Administrator Exam

    Detail
  • CWNA-109

    Certified Wireless Network Administrator Exam

    Detail
  • CWSP-207

    Certified Wireless Security Professional Exam

    Detail

Next scheduled update: CWISA-103 releasing in September 2025

NOTE: For those using the CWSA-101 or CWISA-101 Study and Reference Guides, which are identical in content - only the book title changed to reflect the updated certification name, the current errata is available here.

A solid foundation for the rest of the wireless world. While no certification can cover every single wireless technology in use today, it is important for wireless professionals to grasp the most frequently used wireless solutions in organizations. The Certified Wireless IoT Solutions Administrator (CWISA) learning materials and exam will ensure students know these common wireless certification solutions and prove their knowledge through.

CWISA is built upon two decades of historic quality in WLAN (802.11) certifications and begins the extension of CWNP offerings into the non-802.11 wireless solutions:

Internet of Things (IoT)
Bluetooth Low Energy (BLE)
Cellular Solutions (LTE, LTE-U, 5G, CBRS)
Machine to Machine Communications (M2M)
Zigbee
Location Services
Wired-Side Supporting Technologies
High-Level Awareness of APIs and Automation/Integration Concepts
Project and Program Management Specific to Wireless Solutions Projects

CWISA-102 2022 Objectives
If you are familiar with the CWNA certification and learning materials, the CWISA will have the same approximate depth and breadth of learning. In the future, additional certifications will address key areas in greater depth, such as automation/integration, IoT, private 5G, etc.

Knowledge Domain Percentage
Wireless Technologies 15%
Radio Frequency Communications 15%
Planning Wireless Solutions 20%
Implementing Wireless Solutions 25%
Supporting Wireless Solutions 25%

1.0 Wireless Technologies (15%)
1.1 Maintain continued awareness of wireless IoT technologies and applications of those technologies
1.1.1 Understand research and lab testing skills to maintain technology awareness
1.1.2 Understand the most common applications of wireless technologies, the frequencies used and communication protocols
1.2 Understand industry standard, certification and regulatory organizations and standards development processes
1.2.1 Institute of Electrical and Electronics Engineers (IEEE)
1.2.2 Internet Engineering Task Force (IETF)
1.2.3 Wi-Fi Alliance
1.2.4 International Telecommunication Union (ITU)
1.2.5 Bluetooth Special Interest Group (SIG)
1.2.6 3rd Generation Partnership Project (3GPP)
1.2.7 Connectivity Standards Alliance (CSA)
1.2.8 LoRa Alliance
1.2.9 Explain the roles of regulatory agencies such as the FCC, IC, CE and others
1.3 Define wireless network types
1.3.1 Wireless Local Area Network (WLAN)
1.3.2 Wireless Personal Area Network (WPAN)
1.3.3 Wireless Body Area Network (WBAN)
1.3.4 Wireless Metropolitan Area Network (WMAN)
1.3.5 Wireless Wide Area Network (WWAN)
1.3.6 Wireless Sensor Network (WSN)
1.3.7 Internet of Things (IoT)
1.3.7.1 Industry 4.0/5.0
1.3.7.2 Connected Vehicles
1.3.7.3 Smart Cities
1.3.7.4 Smart Offices/Buildings/Homes
1.4 Understand hardware and software components of IoT end devices and gateways
1.4.1 Processors
1.4.2 Memory
1.4.3 Radios
1.4.4 Storage
1.4.5 Sensors
1.4.6 Network connections
1.4.7 Operating Systems/Firmware
1.4.8 Application/Service Software
1.4.9 Off-the-shelf Devices
1.4.10 Custom Devices

2.0 Radio Frequency Communications (15%)

2.1 Explain the basic RF wave characteristics, behaviors and measurements used for wireless communications
2.1.1 Frequency, wavelength, amplitude, and phase
2.1.2 Amplification, attenuation, and free space path loss
2.1.3 Absorption, reflection, refraction, scattering, and diffraction
2.1.4 RF signal metrics
2.1.4.1 Watt, milliwatt, and microwatt
2.1.4.2 Decibel (dB) and decibels to milliwatt (dBm)
2.1.4.3 RF noise and noise floor
2.1.4.4 SNR and SINR
2.2 Describe the fundamentals of modulation techniques used in wireless communications
2.2.1 Amplitude Shift Keying (ASK)
2.2.2 Frequency Shift Keying (FSK)
2.2.3 Phase Shift Keying (PSK)
2.2.4 Amplitude and Phase Shift Keying (APSK)
2.2.5 Quadrature Amplitude Modulation (QAM)
2.2.6 Orthogonal Frequency Division Multiplexing (OFDM)
2.2.7 Orthogonal Frequency Division Multiple Access (OFDMA)
2.2.8 Frequency Hopping
2.2.9 Chirp Spread Spectrum (CSS)
2.2.10 Additional modulation methods (AM, FM, and CW)
2.3 Explain the basic capabilities of components used in RF communications
2.3.1 Radios (receivers, transmitters, and transceivers)
2.3.2 Antennas
2.3.3 Intentional radiator and Equivalent Isotropically Radiated Power (EIRP) and Effective Radiated Power (ERP)
2.3.4 RF cabling and connectors
2.3.5 Link types including PTP, PTMP, mesh, ad-hoc and on-demand
2.4 Describe the basic use and capabilities of the RF bands
2.4.1 Radio Frequency Bands
2.4.2 RF bands and communication ranges
2.4.3 RF bands and power levels

3.0 Planning Wireless Solutions (20%)

3.1 Identify and use the wireless IoT system requirements
3.1.1 Use cases and applications
3.1.2 Capacity requirements
3.1.3 Security and monitoring requirements
3.1.4 Integration requirements (automation, data transfer/conversion, APIs, cross-platform integration)
3.1.5 Stakeholder identification
3.2 Identify and comply with system constraints
3.2.1 Budgetary constraints
3.2.2 Security constraints
3.2.3 Technical constraints
3.2.4 Business policies and requirements
3.2.5 Regulatory constraints
3.2.6 System dependencies
3.2.7 Evaluate existing network infrastructure and understand its limitations in the context of the new wireless system
3.3 Select appropriate wireless IoT solutions based on requirements and constraints
3.4 Plan for the technical requirements of the wireless IoT solution
3.4.1 LAN networking requirements (VLANs, PoE, TCP/IP, DHCP, DNS, wired connectivity, cellular connections, serial data)
3.4.2 WAN networking requirements
3.4.3 Systems requirements (virtualization, containers, cloud platforms, cabling, grounding, radios, antennas)
3.4.4 APIs, protocols, and programmability (RESTful, Webhooks, Web Sockets, OpenConfig, MQTT)
3.4.5 Frequency coordination compliance (channel capacity management, interoperability, interference management)
3.5 Understand the basic features and capabilities of common wireless IoT solutions and plan for their implementation
3.5.1 Internet of Things (IoT) (CO-to-CO, CO-to-Service, CO-to-human)
3.5.2 802.11 WLANs
3.5.3 Bluetooth
3.5.4 Zigbee
3.5.5 802.15.4-based protocols
3.5.6 LoRaWAN
3.5.7 Sigfox
3.5.8 Location services (RTLS, Bluedot, geofencing, beaconing) and location methods, including triangulation, trilateration and multi-lateration

4.0 Implementing Wireless Solutions (25%)

4.1 Understand the wireless IoT solution and consider key issues related to automation, integration, monitoring, and management
4.1.1 Automation, integration, and management protocols and standards (APIs, programming languages, data structures, communication protocols, data of interest, analytics, and services)
4.1.2 Monitoring solutions (integrated, overlay, APIs)
4.2 Use best practices in wireless IoT solution implementations
4.2.1 Pilot testing (proof-of-concept, early-stage analysis)
4.2.2 Configuration and staging
4.2.3 Installation
4.2.4 Documentation
4.3 Validate wireless solution implementations including RF communications and application functionality
4.3.1 Initial testing
4.3.2 Troubleshooting and remediation
4.4 Understand and implement basic installation procedures
4.4.1 Configure and mount wireless equipment according to applicable safety requirements (OSHA) and building codes
4.4.2 Configure connectivity (wireless and wired)
4.4.3 Configure the network infrastructure or communicate configuration requirements to the appropriate individuals
4.4.4 Configure cloud connectivity where appropriate
4.4.5 Configure features related to video, voice, captive portals, container-based apps, telemetry, location services, MDM and SDN/NFV
4.4.6 Implement appropriate security solutions for the selected wireless system
4.4.6.1 Authentication
4.4.6.2 Authorization
4.4.6.3 Encryption
4.4.6.4 Monitoring
4.5 Implement best practices in knowledge transfer and hand-off
4.5.1 Staff training (end users, administrators)
4.5.2 Solution documentation (topology, configuration, protocols, physical locations, APIs in use)
4.5.3 Final customer meeting (requirements review, stakeholder approval)

5.0 Supporting Wireless Solutions (25%)

5.1 Administer the wireless solution while considering the implications of various vertical markets
5.1.1 Healthcare
5.1.2 Industrial/Manufacturing
5.1.3 Smart Cities
5.1.4 Consumer spaces (smart homes)
5.1.5 Smart Agro
5.1.6 Smart Offices/Buildings
5.1.7 Retail
5.1.8 Education
5.1.9 Large Public Venues
5.2 Troubleshoot common problems in wireless IoT solutions
5.2.1 Interference
5.2.2 Improper configuration
5.2.3 Security misconfiguration
5.2.4 Signal strength
5.2.5 Malfunctioning hardware
5.2.6 Software/firmware issues
5.2.7 Drivers
5.2.8 Faulty custom software code
5.2.9 Faulty installation
5.3 Understand and determine the best use of scripting and programming solutions for wireless IoT implementations
5.3.1 Identify and differentiate among the features of various scripting/programming languages (Python, R, PHP, C (and variants), JavaScript, Java and TypeScript)
5.3.2 Understand the basics of data structures commonly used for integration of networked systems
5.3.2.1 JSON
5.3.2.2 YANG
5.3.2.3 XML
5.3.2.4 YAML
5.3.2.5 XAML
5.3.3 Understand the basics of APIs and common models
5.3.3.1 RESTful
5.3.3.2 webhooks
5.3.3.3 WebSockets
5.3.3.4 Standard HTTP GET/POST processing
5.3.4 Understand the basics of networking, application and security protocols used in wireless IoT solutions
5.3.4.1 HTTP/HTTPS
5.3.4.2 NETCONF
5.3.4.3 OpenConfig
5.3.4.4 MQTT, DDS, AMQP, CoAP
5.3.4.5 SNMP
5.3.4.6 SSL/TLS
5.3.4.7 SSH
5.3.4.8 IPv4/IPv6
5.3.4.9 TCP/UDP
5.4 Understand application architectures and their impact on wireless IoT solutions
5.4.1 Single-tier architecture
5.4.2 Multi-tier architecture
5.4.3 Database systems (relational, No-SQL, streaming data)
5.4.4 Web Servers
5.4.5 Application servers/services (Network Time Protocol, DNS, system-specific)


CWISA-102 Brain Dumps Exam + Online / Offline and Android Testing Engine & 4500+ other exams included
$50 - $25
(you save $25)
Buy Now

QUESTION 1
What part(s) of the OSI network model does the IETF primarily focus on for the development of standards?

A. Physical Layerand above
B. All layers
C. Network Layer and above
D. Data Link Layer

Answer: C

Explanation:
IETF's Focus: The Internet Engineering Task Force (IETF) primarily develops and standardizes internet
protocols operating at the Network Layer (Layer 3) and above in the OSI model.
Key Protocols: Some prominent IETF-developed protocols include:
IP (Internet Protocol): Foundation of internet addressing and routing.
TCP (Transmission Control Protocol): Reliable, connection-oriented data transport.
UDP (User Datagram Protocol): Connectionless, best-effort data transport.
DNS (Domain Name System): Translates domain names into IP addresses.
HTTP (Hypertext Transfer Protocol): Web communication.
References

QUESTION 2
What organization maintains and publishes the 802.15.4 Standard?

A. Bluetooth SIG
B. IEEE
C. IETF
D. Zigbee Alliance

Answer: B

Explanation:
IEEE 802.15.4: The IEEE 802.15.4 standard is a fundamental specification for low-rate wireless
personal area networks (LR-WPANs). It serves as the basis for many wireless IoT protocols.
IEEE's Role: The Institute of Electrical and Electronics Engineers (IEEE) is the organization responsible
for creating, maintaining, and publishing the 802.15.4 standard.

QUESTION 3
What is the most common difference between a single board computer (SBC) and a controller board?

A. SBCs typically have connectors for display and input devices while controller boards do not
B. Controller boards have I/O headers and SBCs do not
C. SBCs always have connectors for M2 devices and controller boards do not
D. Controller boards have more powerful processors than most SBCs

Answer: A

Explanation:
SBCs (Single Board Computers): Designed as standalone, small-form-factor computers.
They often include:
Display Interfaces: HDMI, DisplayPort, etc.
Input Connections: USB for keyboards, mice, etc.
General Purpose Functionality: Can run a full operating system for wider applications.
Controller Boards: Focus on controlling specific hardware or systems.
Limited direct I/O: Limited connectors for displays/input devices.
Specialized tasks: Designed for embedded applications within larger systems.

QUESTION 4
You are considering the implementation of a lab for testing wireless equipment. What is the primary benefit of such a lab? (Choose the single best answer.)

A. Provides for testing to determine how much RF exposure you can tolerate
B. Provides a failover environment for your production systems
C. Provides a way to repurpose old hardware that is not ready for final removal
D. Provides a safe environment in which to develop practical skills and knowledge of a technology and to test the technology

Answer: D

Explanation:
Lab Purpose: Wireless testing labs offer controlled settings to:
Skill Development: Hone practical understanding of wireless technologies without impacting
production environments.
Experimentation: Safely test different configurations, compatibility, and potential issues.
Troubleshooting: Isolate problems, test solutions, and understand how equipment behaves in various
scenarios.
Other Benefits (While not the primary benefit):
Learning Environment: Ideal for structured training and exploration.
Evaluation: Compare hardware performance before deployment.
References
Benefits of IT Labs: Can be extended from wireless to broader IT experimentation and learning.
(Articles on this topic are readily available)

QUESTION 5

What is the typical range of a wireless body area network (WBAN)?

A. 1-2 meters
B. 10 square meters
C. 10 centimeters
D. 10 meters

Answer: A

Explanation:
WBAN Range: Wireless Body Area Networks (WBANs) specialize in short-range communication
around the human body. Typical ranges fall within 1-2 meters.
Purpose: This range is designed to:
Connect sensors monitoring health metrics.
Transmit data to a central coordinator device (e.g., smartphone).
Minimize interference potential with other wireless networks.

QUESTION 6
What software is typically stored in ROM and is used to initialize a device?

A. Firmware
B. Application
C. Container
D. Service

Answer: A

Explanation:
Firmware Definition: Firmware is a type of software embedded in hardware devices. It provides lowlevel
instructions that control the basic operations and initialization of the device.
ROM Storage: Firmware is typically stored in Read-Only Memory (ROM) or other forms of nonvolatile

CWISA-102 Brain Dumps Exam + Online / Offline and Android Testing Engine & 4500+ other exams included
$50 - $25 (you save $25)
Buy Complete

Students Feedback / Reviews/ Discussion

Mahrous Mostafa Adel Amin 1 week, 2 days ago - Abuhib- United Arab Emirates
Passed the exam today, Got 98 questions in total, and 2 of them weren’t from exam topics. Rest of them was exactly the same!
upvoted 4 times

Mbongiseni Dlongolo - South Africa2 weeks, 5 days ago

Thank you so much, I passed CWISA-102 today! 41 questions out of 44 are from Certkingdom
upvoted 2 times

Kenyon Stefanie 1 month, 1 week ago - USA State / Province = Virginia

Thank you so much, huge help! I passed CWISA-102 CWNP today! The big majority of questions were from here.
upvoted 2 times

Danny 1 month, 1 week ago - United States CUSTOMER_STATE_NAME: Costa Mesa = USA
Passed the exam today, 100% points. Got 44 questions in total, and 3 of them weren’t from exam topics. Rest of them was exactly the same!

MENESES RAUL 93% 2 week ago - USA = Texas
was from this topic! I did buy the contributor access. Thank you certkingdom!
upvoted 4 times

Zemljaric Rok 1 month, 2 weeks ago - Ljubljana Slovenia

Cleared my exam today - Over 80% questions from here, many thanks certkingdom and everyone for the meaningful discussions.
upvoted 2 times



logged members Can Post comments / review and take part in Discussion


Certkingdom Offline Testing Engine Simulator Download

    CWISA-102 Offline Desktop Testing Engine Download



    Prepare with yourself how CertKingdom Offline Exam Simulator it is designed specifically for any exam preparation. It allows you to create, edit, and take practice tests in an environment very similar to an actual exam.


    Supported Platforms: Windows-7 64bit or later - EULA | How to Install?



    FAQ's: Windows-8 / Windows 10 if you face any issue kinldy uninstall and reinstall the Simulator again.



    Download Offline Simulator-Beta



Certkingdom Testing Engine Features

  • Certkingdom Testing Engine simulates the real exam environment.
  • Interactive Testing Engine Included
  • Live Web App Testing Engine
  • Offline Downloadable Desktop App Testing Engine
  • Testing Engine App for Android
  • Testing Engine App for iPhone
  • Testing Engine App for iPad
  • Working with the Certkingdom Testing Engine is just like taking the real tests, except we also give you the correct answers.
  • More importantly, we also give you detailed explanations to ensure you fully understand how and why the answers are correct.

Certkingdom Android Testing Engine Simulator Download

    CWISA-102 Offline Android Testing Engine Download


    Take your learning mobile android device with all the features as desktop offline testing engine. All android devices are supported.
    Supported Platforms: All Android OS EULA


    Install the Android Testing Engine from google play store and download the app.ck from certkingdom website android testing engine download
    Google PlayStore



Certkingdom Android Testing Engine Features

  • CertKingdom Offline Android Testing Engine
  • Make sure to enable Root check in Playstore
  • Live Realistic practice tests
  • Live Virtual test environment
  • Live Practice test environment
  • Mark unanswered Q&A
  • Free Updates
  • Save your tests results
  • Re-examine the unanswered Q & A
  • Make your own test scenario (settings)
  • Just like the real tests: multiple choice questions
  • Updated regularly, always current